Электронная эмиссия

испускание электронов поверхностью твёрдого тела или жидкости. Э. э. возникает в случаях, когда под влиянием внешних воздействий часть электронов тела приобретает энергию, достаточную для преодоления потенциального барьера (См. Потенциальный барьер) на границе тела, или если под действием электрического поля поверхностный потенциальный барьер становится прозрачным для части электронов, обладающих внутри тела наибольшими энергиями. Э. э. может возникать при нагревании тел (Термоэлектронная эмиссия), при бомбардировке электронами (Вторичная электронная эмиссия), ионами (Ионно-электронная эмиссия) или фотонами (Фотоэлектронная эмиссия). В определённых условиях (например, при пропускании тока через полупроводник с высокой подвижностью электронов или при приложении к нему сильного импульса электрического поля) электроны проводимости могут «нагреваться» значительно сильнее, чем кристаллическая решётка, и часть из них может покинуть тело (эмиссия горячих электронов).

Для наблюдения Э. э. необходимо создать у поверхности тела (эмиттера) внешне ускоряющее электроны электрическое поле, которое «отсасывает» электроны от поверхности эмиттера. Если это поле достаточно велико (≥ 10 2 в/см ), то оно уменьшает высоту потенциального барьера на границе тела и соответственно работу выхода (Шотки эффект), в результате чего Э. э. возрастает. В сильных электрических полях (Электронная эмиссия10 7 в/см ) поверхностный потенциальный барьер становится очень тонким и возникает туннельное «просачивание» электронов сквозь него (Туннельная эмиссия), иногда называемое также автоэлектронной эмиссией. В результате одновременного воздействия 2 или более факторов может возникать термоавто- или фотоавтоэлектронная эмиссия. В очень сильных импульсных электрических полях (Электронная эмиссия 5․10 7 в/см ) туннельная эмиссия приводит к быстрому разрушению (взрыву) микроострий на поверхности эмиттера и к образованию вблизи поверхности плотной плазмы (См. Плазма). Взаимодействие этой плазмы с поверхностью эмиттера вызывает резкое увеличение тока Э. э. до 10 6 а при длительности импульсов тока в несколько десятков нсек (взрывная эмиссия). При каждом импульсе тока происходит перенос микроколичеств (Электронная эмиссия 10 -11 г ) вещества эмиттера на анод.

Лит.: Добрецов Л. Н., Гомоюнова М. В., Эмиссионная электроника, М., 1966; Бугаев С. П., Воронцов-Вельяминов П. Н., Искольдский А. М., Месяц С, А., Проскуровский Д. И., Фурсей Г. Н., Явление взрывной электронной эмиссии, в сборнике: Открытия в СССР 1976 года, М., 1977.

Т. М. Лифшиц.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Электронная эмиссия" в других словарях:

    Электронная эмиссия явление испускания электронов поверхностью твёрдого тела или жидкости. Типы эмиссии Термоэлектронная эмиссия Электронную эмиссию, возникающую в результате нагрева, называют термоэлектронной эмиссией (ТЭ). Явление ТЭ… … Википедия

    Испускание электронов поверхностью конденсированной среды. Э. э. возникает в случаях, когда часть электронов тела приобретает в результате внеш. воздействия энергию, достаточную для преодоления потенц. барьера на его границе, или если внеш.… … Физическая энциклопедия

    Испускание эл нов поверхностью конденсированной среды. Э. э. возникает в случаях, когда часть эл нов тела приобретает в результате внеш. воздействий энергию, достаточную для преодоления потенциального барьера на его границе, или если внеш.… … Физическая энциклопедия

    ЭЛЕКТРОННАЯ эмиссия, испускание электронов твердым телом или жидкостью под действием электрического поля (автоэлектронная эмиссия), нагрева (термоэлектронная эмиссия), электромагнитного излучения (фотоэлектронная эмиссия), потока электронов… … Современная энциклопедия

    Большой Энциклопедический словарь

    Электронная эмиссия - ЭЛЕКТРОННАЯ ЭМИССИЯ, испускание электронов твердым телом или жидкостью под действием электрического поля (автоэлектронная эмиссия), нагрева (термоэлектронная эмиссия), электромагнитного излучения (фотоэлектронная эмиссия), потока электронов… … Иллюстрированный энциклопедический словарь

    электронная эмиссия - Испускание электронов с поверхности материала в окружающее пространство. [ГОСТ 13820 77] Тематики электровакуумные приборы … Справочник технического переводчика

    электронная эмиссия - испускание электронов поверхностью твердого тела или жидкости. Электронная эмиссия возникает в случаях, когда под влиянием внешних воздействий часть электронов тела приобретает энергию, достаточную для преодоления… … Энциклопедический словарь по металлургии

    Испускание электронов твердым телом или жидкостью под действием электрического поля (автоэлектронная эмиссия), нагрева (термоэлектронная эмиссия), электромагнитного излучения (фотоэлектронная эмиссия), потока электронов (вторичная электронная… … Энциклопедический словарь

    Испускание электронов в вом. В зависимости от способа возбуждения различают след. осн. типы Э. э.: термоэлектронная эмиссия, фотоэлектронная эмиссия (см. Фотоэффект внешний), вторичная электронная эмиссия, автоэлектронная эмиссия … Большой энциклопедический политехнический словарь

Книги

  • Взрывная электронная эмиссия , Г. А. Месяц , … Категория: Электричество и магнетизм
  • Вторичная электронная эмиссия , И. М. Бронштейн , Б. С. Фрайман , Книга посвящена одному из вопросов современной физической электроники - вторичной электронной эмиссии. Рассмотрены методы измерений: коэффициента вторичной эмиссии (ВЭ), неупругого и упругого… Категория: Физика твердого тела. Кристаллография Серия: Физико-математическая библиотека инженера Издатель:

В узлах кристаллической решетки металлов находятся положительные ионы, а между ними свободно движутся электроны. Они как бы плавают по всему объему проводника, так как силы притяжения к положительным ионам решетки, действующие на свободные электроны, находящиеся внутри металла, в среднем взаимно уравновешиваются. Действие сил притяжения со стороны положительных ионов на электроны мешает последним выйти за пределы поверхности металла.

Лишь наиболее быстрые электроны могут преодолеть это притяжение и вылететь из металла. Однако совсем покинуть металл электрон не может, так как притягивается положительным поверхностным ионом и тем зарядом, который возник в металле в связи с потерей электрона. Равнодействующая этих сил притяжения не равна нулю, а направлена внутрь металла перпендикулярно его поверхности (рис. 1).

Через некоторое время электрон под действием этих сил может возвратиться в металл. Среди электронов, находящихся вблизи поверхности металла, найдется большое число таких, которые временно будут покидать металл, а затем возвращаться обратно. Этот процесс напоминает испарение жидкости. В конце концов устанавливается динамическое равновесие между покидающими и возвращающимися электронами. Таким образом, на границе металла с вакуумом возникает двойной слой электрических зарядов, поле которого подобно полю плоского конденсатора. Электрическое поле этого слоя можно считать однородным (рис. 2). Разность потенциалов в этом слое называется контактной разностью потенциалов между металлом и вакуумом.

Этот двойной электрический слой не создает поля во внешнем пространстве, но препятствует выходу электронов из металла.

Как показывают расчеты и специально поставленные опыты, толщина этого слоя мала и равна примерно 10 -10 м.

Таким образом, чтобы покинуть металл и уйти в окружающую среду, электрон должен совершить работу A в против сил притяжения со стороны положительного заряда металла и против сил отталкивания от отрицательно заряженного электронного облака. Она приблизительно равна A в = e, где e - заряд электрона. Для этого электрон должен обладать достаточной кинетической энергией.

Минимальную работу A в, которую должен совершить электрон за счет своей кинетической энергии для того, чтобы выйти из металла и не вернуться в него, называют работой выхода .

Работа выхода зависит только от рода металла и его чистоты. Работу выхода принято измерять в электронвольтах (эВ).

Для чистых металлов A в составляет несколько электронвольт. Так, например, для цезия ее значение равно 1,81 эВ, для платины 6,27 эВ.

Выход свободных электронов из металла называется эмиссией электронов . При нормальных внешних условиях электронная эмиссия выражена слабо, так как средняя кинетическая энергия хаотического теплового движения большинства свободных электронов в металлах гораздо меньше работы выхода. Для повышения интенсивности эмиссии следует увеличить кинетическую энергию свободных электронов до значений, равных или больших значения работы выхода. Этого можно достигнуть различными способами. Во-первых, созданием электрического поля очень большой напряженности (E ~ 10 6 В/см), способного вырвать электроны из металла, - холодная эмиссия . Такая эмиссия используется в электронных микропроекторах. Во-вторых, бомбардировкой металла электронами, предварительно разогнанными электрическим полем до очень большой скорости, - вторичная электронная эмиссия . В-третьих, интенсивным освещением поверхности металла - фотоэмиссия . На явлении фотоэмиссии основан внешний фотоэффект и устройство вакуумного фотоэлемента. В-четвертых, нагревание металла - термоэлектронная эмиссия . Электроны, испускаемые нагретым телом, называются термоэлектронами , а само это тело - эмиттером .

Под вакуумом понимают газ или воздух, находящийся в состоянии найвысщего разрежения (давление порядка ). Вакуум является непроводящей средой, так как в нем содержится ничтожное количество электрически нейтральных частиц вещества.

Для получения в вакууме электрического тока необходим источник заряженных частиц - электронов, причем движение электронов в вакууме происходит практически без столкновений с частицами газа.

Источником электронов служит обычно металлйческий электрод - катод. При этом используется явление выхода электронов с поверхности катода в окружающую среду, называемое электронной эмиссией.

Свободные электроны в металле при отсутствии внешнего электрического поля беспорядочно перемещаются между ионами кристаллической решетки.

Рис. 13-6. Двойной электрический слой на поверхности металла.

При комнатной температуре выхода электронов из металла не наблюдается вследствие недостаточной величины их кинетической энергии. Часть электронов, обладающих наибольшей кинетической энергией, при своем движении выходит за поверхность металла, образуя электронный слой, который вместе с расположенным под ним в металле слоем положительных ионов кристаллической решетки образует двойной электрический слой (рис. 13-6). Электрическое поле этого двойного слоя противодействует электронам, стремящимся выйти из проводника, т. е. является для них тормозящим.

Для выхода электрона за пределы поверхности металла электрону необходимо, сообщить энергию, равную работе, которую он должен совершить по преодолению тормозящего действия поля двойного слоя. Эта работа называется работой выхода Отношение энергии выхода к заряду электрона называется потенциалом выхода, т. е. .

Работа (потенциал) выхода зависит от химической природы металла.

Значения потенциала выхода для некоторых металлов даны в табл. 13-1.

Таблица 13-1

В зависимости от того, каким способом сообщается электронам дополнительная энергия, необходимая для выхода из металла, различают виды эмиссии: термоэлектронную, электростатическую, фотоэлектронную, вторичную и под ударами тяжелых частиц.

Термоэлектронной эмиссией называется явление выхода электронов из катода, обусловленное исключительно нагревом катода. При нагревании металла скорости движения электронов и Их кинетическая энергия увеличиваются и число электронов, покидающих металл, возрастает. Все электроны, вылезающие из катода в единицу времени, если Они удаляются от катода внешним полем, образуют электрический ток эмиссии . При повышении температуры катода ток эмиссии растет сначала медленно, а затем все быстрее и быстрее. На рис. 13-7 даны кривые плотности тока эмиссии, т. е. тока эмиссии, отнесенного к единице поверхности катода, выраженной в А/см2, в зависимости от температуры Т для различных катодов.

Рис. 13-7. Кривые плотности тока эмиссии в зависимости от температуры для различных катодов: а - оксидный; б - вольфрамовый, покрытый торием; в - вольфрамовый без покрытия.

Зависимость плотности эмиссионного тока от температуры и работы выхода выражается уравнением Ричардсона-Дэшмана:

где А - постоянная эмиссии; для металлов она равна ; Т - абсолютная температура катода, К; - основание натуральных логарифмов; - работа выхода, эВ; - постоянная Больцмана.

Таким образом, плотность тока эмиссии увеличивается пропорционально и так что для получения большого тока эмиссии необходим катод из материала с малой работой выхода и высокой рабочей температурой.

Если электроны, вылетевшие из катода (эмиттированные электроны), не удаляются от него внешним ускоряющим полем, то они скапливаются вокруг катода, образуя объемный отрицательный заряд (электронное облако), который создает вблизи катода тормозящее электрическое поле, препятствующее дальнейшему вылету электронов из катода.

Электростатической электронной эмиссией называется явление выхода электронов из поверхности катода, обусловленное исключительно наличием у поверхности катода сильного электрического поля.

Сила, действующая на электрон, находящийся в электрическом поле, пропорциональна заряду электрона и напряженности поля F - её. При достаточно большой напряженности ускоряющего поля силы, действующие на электрон, находящиеся у поверхности катода, становятся достаточно большими для преодоления потенциального барьера и вырывания электронов из холодного катода.

Электростатическая эмиссия находит применение в ртутных вентилях и некоторых других приборах.

Фотоэлектронной эмиссией называется явление выхода электронов, обусловленное исключительно действием излучения, поглощаемого катодом, и не связанное с его нагреванием. При этом электроны катода получают дополнительную энергию от частиц света - фотонов.

Лучистая энергия испускается и поглощается определенными порциями - квантами. Если энергия кванта, определяемая произведением постоянной Планка частоты излучения v, т. е. , больше работы выхода для материала данного катода то электрон может покинуть катод., т. е. будет иметь место фотоэлектронная эмиссия.

Фотоэлектронная эмиссия применяется в фотоэлементах.

Вторичной электронной эмиссией называется явление выхода вторичных электронов, обусловленное исключительно ударами первичных электронов о поверхность тела (проводника, полупроводника). Летящие электроны, называемые первичными, встречая на пути проводник, ударяются о него, проникают в его поверхностный слой и отдают часть своей энергии электронам проводника. Если дополнительная энергия, получаемая электронами при ударе, будет больше работы выхода, то эти электроны могут выйти за пределы проводника.

Вторичная электронная эмиссия используется, например, в фотоэлектронных умножителях для усиления тока.

Вторичная эмиссия может наблюдаться в электронных лампах, в которых анод подвергается воздействию электронов, летящих от катода. В этом случае вторичные электроны могут создать поток, встречный «рабочему», ухудшающий работу лампы.

Электронной эмиссией под ударами тяжелых частиц называется явление выхода электронов, обусловленное исключительно ударами ионов или возбужденных атомов (молекул) о поверхность тела - электрода. Этот вид эмиссии аналогичен рассмотренной выше вторичной электронной эмиссии.

Уже отмечалось, при переходе границы раздела между проводником и вакуумом скачком изменяются напряженность и индукция электрического поля. С этим связаны специфические явления. Электрон свободен только в границах металла. Как только он пытается перейти границу «металл – вакуум», возникает кулоновская сила притяжения между электроном и образовавшимся на поверхности избыточным положительным зарядом (рис. 6.1).

Вблизи от поверхности образуется электронное облако, и на границе раздела формируется двойной электрический слой с разностью потенциалов (). Скачки потенциала на границе металла показаны на рисунке 6.2.

В занятом металлом объеме образуется потенциальная энергетическая яма, так как в пределах металла электроны свободны, и их энергия взаимодействия с узлами решетки равна нулю. За пределами металла электрон приобретает энергию W 0 . Это энергия притяжения Для того, чтобы покинуть металл, электрон должен преодолеть потенциальный барьер и совершить работу

(6.1.1)

Эту работу называют работой выхода электрона из металла . Для ее совершения электрону необходимо сообщить достаточную энергию

Термоэлектронная эмиссия

Величина работы выхода зависит от химической природы вещества, от его термодинамического состояния и от состояния поверхности раздела. Если энергия, достаточная для совершения работы выхода, сообщается электронам путем нагревания, то процесс выхода электронов из металла называют термоэлектронной эмиссией .

В классической термодинамике металл представляют в виде ионной решетки, заключающей в себе электронный газ. Считают, что сообщество свободных электронов подчиняется законам идеального газа. Следовательно, в соответствии с распределением Максвелла при температуре, отличной от 0 К, в металле есть какое-то количество электронов, тепловая энергия которых больше работы выхода. Эти электроны и покидают металл. Если температуру увеличить, то увеличивается и число таких электронов.

Явление испускания электронов нагретыми телами (эмиттерами) в вакуум или другую средуназываетсятермоэлектронной эмиссией . Нагрев необходим для того, чтобы энергии теплового движения электрона было достаточно для преодоления сил кулоновского притяжения между отрицательно заряженным электроном и индуцируемым им на поверхности металла положительным зарядом при удалении с поверхности (рис.6.1). Кроме того, при достаточно высокой температуре над поверхностью металла создается отрицательно заряженное электронное облако, препятствующее выходу электрона с поверхности металла в вакуум. Этими двумя и, возможно, другими причинами определяется величина работы выхода электрона из металла.

Явление термоэлектронной эмиссии открыто в 1883 г. Эдисоном, знаменитым американским изобретателем. Это явление наблюдалось им в вакуумной лампе с двумя электродами – анодом, имеющим положительный потенциал, и катодом с отрицательным потенциалом. Катодом лампы может служить нить из тугоплавкого металла (вольфрам, молибден, тантал и др.), нагреваемая электрическим током (рис. 6.3). Такая лампа называется вакуумным диодом. Если катод холодный, то ток в цепи катод – анод практически отсутствует. При повышении температуры катода в цепи катод – анод появляется электрический ток, который тем больше, чем выше температура катода. При постоянной температуре катода ток в цепи катод – анод возрастает с повышением разности потенциалов U между катодом и анодом и выходит к некоторому стационарному значению, называемому током насыщения I н. При этом все термоэлектроны, испускаемые катодом, достигают анода . Величина тока анода не пропорциональна U , и поэтому для вакуумного диода закон Ома не выполняется.

На рисунке 6.3 показаны схема вакуумного диода и вольт-амперные характеристики (ВАХ) I a (U a ). Здесь U з – задерживающее напряжение при котором I = 0.

Холодная и взрывная эмиссия

Электронную эмиссию, вызываемую действием сил электрического поля на свободные электроны в металле, называют холодной эмиссией или автоэлектронной . Для этого должна быть достаточной напряженность поля и должно выполняться условие

(6.1.2)

здесь d – толщина двойного электрического слоя на границе раздела сред. Обычно у чистых металлов и При получим На практике же холодная эмиссия наблюдается при значении напряженности порядка Такое несовпадение относят на счет несостоятельности классических представлений для описания процессов на микроуровне.

Автоэлектронную эмиссию можно наблюдать в хорошо откачанной вакуумной трубке, катодом которой служит острие, а анодом – обычный электрод с плоской или мало изогнутой поверхностью. Напряженность электрического поля на поверхности острия с радиусом кривизны r и потенциалом U относительно анода равна

При и , что приведет к появлению слабого тока, обусловленного автоэлектронной эмиссией с поверхности катода. Сила эмиссионного тока быстро нарастает с повышением разности потенциалов U . При этом катод специально не разогревается, поэтому эмиссия и называется холодной.

С помощью автоэлектронной эмиссии принципиально возможно получение плотности тока но для этого нужны эмиттеры в виде совокупности большого числа острий, идентичных по форме (рис. 6.4), что практически невозможно, и, кроме того, увеличение тока до 10 8 А/см 2 приводит к взрывообразному разрушению острий и всего эмиттера.

Плотность тока АЭЭ в условиях влияния объемного заряда равна (закон Чайльда-Ленгмюра)

где – коэффициент пропорциональности, определяемый геометрией и материалом катода.

Проще говоря, закон Чайльда-Ленгмюра показывает, что плотность тока пропорциональна (закон трех вторых).

Током автоэлектронной эмиссии при концентрации энергии в микрообъемах катода до 10 4 Дж×м –1 и более (при общей энергии 10 -8 Дж) может инициироваться качественно иной вид эмиссии, обусловленный взрывом микроострий на катоде (рис. 6.4).

При этом появляется ток электронов, который на порядки превосходит начальный ток – наблюдается взрывная электронная эмиссия (ВЭЭ). ВЭЭ была открыта и изучена в Томском политехническом институте в 1966 г. коллективом сотрудников под руководством Г.А. Месяца.

ВЭЭ – это единственный вид электронной эмиссии, позволяющий получить потоки электронов мощностью до 10 13 Вт с плотностью тока до 10 9 А/см 2 .

Рис. 6.4 Рис. 6.5

Ток ВЭЭ необычен по структуре. Он состоит из отдельных порций электронов 10 11 ¸ 10 12 штук, имеющих характер электронных лавин, получивших название эктонов (начальные буквы «explosive centre ») (рис. 6.5). Время образования лавин 10 -9 ¸ 10 -8 с.

Появление электронов в эктоне вызвано быстрым перегревом микроучастков катода и является, по существу, разновидностью термоэлектронной эмиссии. Существование эктона проявляется в образовании кратера на поверхности катода. Прекращение эмиссии электронов в эктоне обусловлено охлаждением зоны эмиссии за счет теплопроводности, уменьшения плотности тока, испарения атомов.

Взрывная эмиссия электронов и эктоны играют фундаментальную роль в вакуумных искрах и дугах, в разрядах низкого давления, в сжатых и высокопрочных газах, в микропромежутках, т.е. там, где в наличии есть электрическое поле высокой напряженности на поверхности катода.

Явление взрывной электронной эмиссии послужило основой для создания импульсных электрофизических установок, таких как сильноточные ускорители электронов, мощные импульсные и рентгеновские устройства, мощные релятивистские сверхвысокочастотные генераторы. Например, импульсные ускорители электронов имеют мощность 10 13 Вт и более при длительности импульсов 10 -10 ¸ 10 -6 с, токе электронов 10 6 А и энергии электронов 10 4 ¸ 10 7 эВ. Такие пучки широко используются для исследований в физике плазмы, радиационной физике и химии, для накачки газовых лазеров и пр.

Фотоэлектронная эмиссия

Фотоэлектронная эмиссия (фотоэффект ) заключается в «выбивании» электронов из металла при действии на него электромагнитного излучения.

Схема установки для исследования фотоэффекта и ВАХ аналогичны изображенным на рисунке 6.3. Здесь, вместо разогрева катода, на него направляют поток фотонов или γ-квантов (рис. 6.6).

Закономерности фотоэффекта еще в большей степени не согласуются с классической теорией, чем в случае холодной эмиссии. По этой причине мы рассмотрим теорию фотоэффекта при обсуждении квантовых представлений в оптике.

В физических приборах, регистрирующих γ – излучение, используют фотоэлектронные умножители (ФЭУ ). Схема прибора приведена на рисунке 6.7.

В нем используют два эмиссионных эффекта: фотоэффект и вторичную электронную эмиссию , которая заключается в выбивании электронов из металла при бомбардировке последнего другими электронами. Электроны выбиваются светом из фотокатода (ФК ). Ускоряясь между ФК и первым эмиттером (КС 1), они приобретают энергию, достаточную, чтобы выбить большее число электронов из следующего эмиттера. Таким образом, умножение электронов происходит за счет увеличения их числа при последовательном прохождении разности потенциалов между соседними эмиттерами. Последний электрод называют коллектором. Регистрируют ток между последним эмиттером и коллектором. Таким образом, ФЭУ служит усилителем тока, а последний пропорционален излучению, попадающему на фотокатод, что и используют для оценки радиоактивности.

Эффект Малтера

Поведение автоэмиссионного тока с полупроводниковых катодов на III участке вольтамперной характеристики объясняется наличием сильного падения потенциала в приповерхностном слое и эффектами, связанными с этим: разогрев электронного газа, ударная ионизация, зон-зонное туннелирование. Наличие таких явлений было обнаружено при исследовании электрических свойств полупроводников и диэлектриков. Естественно возникает предположение - нельзя ли искусственно создать падение потенциала, приводящее к такому повышению скорости движения электронов, которое бы позволило хотя бы части из них преодолеть потенциальный барьер и выйти в вакуум даже при отсутствии сильного электрического поля у поверхности.

Поля необходимой величины могут быть созданы в случае систем, обладающих резко неоднородными свойствами. Одной из таких является система металл-диэлектрик-металл (МДМ). На металлическую подложку наносится тонкий, по возможности однородный по свойствам и толщине слой диэлектрика (рис.3.5.1). На поверхности последнего формируют очень тонкую (порядка нескольких десятков ангстрем) пленку металла, основное назначение которой - служить обкладкой конденсатора. При малой толщине диэлектрика достаточно уже нескольких вольт, чтобы создать в диэлектрике напряженность поля порядка 10 5 ...10 6 В/см.

Энергетическая схема для такого случая имеет вид, приведенный на рис.3.5.2. Из нее следует, что при достаточной величине F становится возможной инжекция электронов в слой диэлектрика. Прежде всего, это может произойти за счет термической эмиссии электронов (I) из металлической подложки в диэлектрик. Высота барьера на межфазной границе металл-диэлектрик равна энергетическому расстоянию от дна зоны проводимости диэлектрика до уровня Ферми металла, что, обычно, значительно меньше, чем работа выхода металла. Кроме того, при наличии электрического поля в диэлектрике сказывается влияние на барьер и эффекта Шоттки. Все это может обеспечить достаточный поток электронов даже при низкой температуре. Другая возможность появления электронов в зоне проводимости диэлектрика - автоэмиссия электронов из металла (II).

В зоне проводимости диэлектрика свободные носители при наличии поля, набирают кинетическую энергию при движении к поверхности, происходит разогрев электронного газа, лавинообразное увеличение их количества вследствие ударной ионизации. На границе с металлической пленкой потенциальный барьер отсутствует. Если верхний слой металла тонок, меньше длины свободного пробега электронов, то электроны не успевают прийти в термическое равновесие с решеткой. Значительное их число имеет энергию, достаточную для преодоления барьера на границе с вакуумом.

Эксперименты показали, что процесс появления эмиссионного тока весьма сложен. При низких температурах величины сквозного и эмиссионного токов определяются напряженностью электрического поля в пленке, они сравнительно слабо зависят от температуры. Их зависимости от напряжения могут быть описаны уравнением Фаулера-Нордгейма для автоэмиссии. Однако, корректные расчеты показали, что средние значения , где d - толщина слоя диэлектрика, не достаточны для теоретического объяснения величины наблюдаемых токов. Для успеха теории необходимо, чтобы F была на порядок выше. Это можно было бы легко объяснить шероховатостью подложки. Выступы и микроострия, наличия которых невозможно избежать, способны значительно повысить локальную напряженность поля. Однако, это не позволяет объяснить наблюдаемые плотности эмиссионных токов, которые достигают нескольких десятых А/см 2 .

Есть еще одна причина увеличения F по сравнению с ее усредненным значением. Диэлектрические пленки обычно несовершенны. В них имеется большое количество дефектов (вакансии, нарушения стехиометрии, междоузельные атомы, примеси и т.п.), которые могут являться поставщиками электронов вследствие ударной или туннельной ионизации. При этом образуется объемный положительный заряд. Он в большей степени концентрируется около инжектирующего электроны электрода, поскольку наибольшей вероятностью ионизации обладают частицы, имеющие умеренную скорость. Электроны с высокой энергией имеют меньшее эффективное сечение. С увеличением скорости электрона уменьшается время взаимодействия с дефектом, что снижает вероятность его ионизации. Объемный заряд усиливает напряженность поля около отрицательно заряженного электрода (рис.3.5.3). Казалось бы все проблемы, по крайней мере принципиально, решены. Но появляется новая трудность. Величина пробивного напряжения у диэлектриков обычно порядка 10 6 В/см , т.е. такая же, которая необходима для объяснения экспериментально наблюдаемых токов. Однако, известен экспериментальный факт, что при малых размерах удельная механическая прочность материалов возрастает. Например, для разрыва тонких проволок нужно значительно большее усилие на единицу площади, чем для разрыва прутка большого диаметра. Видимо, это связано с отсутствием в первом случае крупномасштабных дефектов, которые характерны для массивных твердых тел. То же самое может относиться и к электрической прочности.

Таким образом, можно полагать, что при низких температурах в МДМ-системах основной причиной появления электронов в диэлектрическом слое является автоэмиссия из металлической подложки.

В высокотемпературной области, напротив, наблюдается сильная температурная зависимость, в то время как величина поля сказывается слабо. Это указывает на важность термоэмиссионного механизма, который становится превалирующим при повышенных температурах. Некоторое увеличение тока с ростом F можно объяснить влиянием эффекта Шоттки на высоту барьера на границе подложка – слой диэлектрика. Наличие сил зеркального изображения приводит к понижению барьера между основанием и диэлектрической пленкой.

Как и ожидалось, сильное влияние на величину эмиссионного тока оказывает толщина верхнего электрода. Наблюдается сильная, экспоненциальная, зависимость: , где d – толщина пленки, a - величина, зависящая от свойств металлической пленки.

Картина эмиссии электронов из МДМ-системы, представленная выше, достаточно проста, чего не скажешь о практическом осуществлении, требующем высокой культуры изготовления пленок. Особенно ответственным является требование однородности диэлектрических пленок. Они должны иметь одинаковую толщину, полностью исключается наличие пор.

К настоящему времени изучено большое число разнообразных систем. К материалу базового электрода не предъявляется особых требований. Достаточно, чтобы на поверхности имелась хорошо упорядоченная структура, и подложка имела высокую электропроводность.

Диэлектрические пленки нередко формируются окислением поверхностного слоя базового электрода. В этих случаях используют алюминий, бериллий, тантал, ниобий. Экспериментально наиболее подробно исследовались системы, в которых использовались пленки Al 2 O 3 , SiO 2 , SiO, MgO, BeO, BN и др., имеющие широкую запрещенную зону и способные выдерживать без пробоя высокие электрические поля. В качестве тонкого наружного электрода применялисьпленки Au, Pt, Al, Be, Ag и др. На рис.3.5.4 приведены результаты, полученные для системы Al/Al 2 O 3 /Au . Уже при небольших напряжениях, порядка нескольких вольт, удается получать токи достаточной для практического использования величины.

Важной величиной для МДМ-катодов является эффективность g 0 , которую можно определить как отношение эмиссионного тока (i эм )к потребляемому току, протекающему через диэлектрический слой (i д/э ). g 0 может меняться в широких пределах: от 10 -2 до 10 -7 . Она во многом зависит от качества пленки, ее толщины, работы выхода верхнего металлического слоя. В частности, в случае системы Be-BeO-Au была получена величина g 0 =10 -3 (j эм =0.2 A/ см 2 при j д/э =200 А/см 2 ).

В частности, в случае системы, состоящей из слоя кремния толщиной 5 мкм на алюминиевой подложке, на котором был получен тонкий слой (400 нм ) оксида, покрытый Pt, была получена величина g 0 =0,28 (j эм =1.4 мA/ см 2 при j д/э =3,6 мА/см 2 ). .

Экономичность катодов характеризуют отношением плотности эмиссионного тока j в мА к необходимой для этого мощности W в Вт.

В последнее время активно исследуются и уже находят практическое применение еще более простые системы, состоящие из тонкого диэлектрического слоя, нанесенного на металлическую подложку, в качестве которой используется острие (рис.3.5.5) . Внешнее электрическое поле проникает в слой диэлектрика, и электроны, туннелирующие из металла сквозь барьер на межфазовой границе, ускоряются этим полем. В случае небольшого барьера на границе с вакуумом они способны выйти из системы. При соответствующем выборе диэлектрика (малое сродство, расположение уровня Ферми около дна зоны проводимости и т.п.) интенсивная эмиссия может быть получена уже при относительно малых напряжениях. В качестве примера на рис.3.5.6 приведены вольтамперные характеристики, полученные для системы алмаз/кремний при разных толщинах диэлектрического слоя . В случае тонких слоев значительный эмиссионный ток имеет место уже при напряжениях порядка нескольких сот вольт.

Еще одной системой, в которой для получения эмиссии электронов используется электрическое поле высокой напряженности, является диспергированная пленка. На диэлектрическую подложку наносится тонкая металлическая пленка, имеющая островковое строение (рис.3.5.7). При приложении разности потенциалов наряду с током, протекающим вдоль пленки, возникает и эмиссия электронов. На рис.3.5.8 приведено изображение диспергированной пленки золота, полученное в электронном микроскопе, а также зависимости тока, протекающего вдоль пленки I , и эмиссионного тока I э от напряжения вдоль пленки . Наличие зазоров между островками приводит к неомическому характеру проводимости пленки. Механизм проводимости сложен, но очевидно, что основную роль играют эмиссионные процессы, вследствие которых происходит переход электронов от одного островка к другому. В качестве главных рассматривается термоэлектронная эмиссия, усиленная понижением барьера вследствие малости промежутков между островками, автоэлектронная эмиссия, а также переход через подложку. Высокая величина напряженности возникает вследствие того, что все падение напряжения сосредоточено на промежутках между металлическими островками. При переходе от островка к островку электроны приобретают большую кинетическую энергию, однако их импульс направлен вдоль пленки. Но, в дальнейшем, при движении по островку имеет место рассеяние, в результате которого при небольших изменениях энергии электронов может происходить сильное изменение направления движения.Те из них, которые движутся к наружной стороне островка, способны преодолеть барьер на границе с вакуумом. Применение таких эмиттеров ограничивается отсутствием технологии, позволяющей создавать воспроизводимые по форме, размеру и расположению пленочные системы.

Условия, необходимые для разогрева электронного газа, могут быть созданы и на pn- переходе. На рис.3.5.9 приведена энергетическая схема для этого случая. Если на переход подать напряжение в запирающем направлении, то энергия дна зоны проводимости в р -области может быть больше энергии уровня вакуума (рис.3.5.9.б ). Поэтому электроны, движущиеся от p - к n- типу и не потерявшие больших порций энергии при прохождении через верхний слой, имеют возможность выйти в вакуум.

Крайне важной является толщина верхнего слоя и ширина области pn- перехода. Они должны быть как можно тоньше, чтобы обеспечить достаточную эффективность.

На рис.3.5.10 приведена зависимость эмиссионного тока от напряжения на рп -переходе, сформированном на основе кремния . Уже нескольких вольт достаточно для получения токов порядка десятков и сотен микроампер. Насколько большое значение имеют процессы рассеяния в поверхностном слое, можно судить по приведенным на рис.3.5.11 зависимостям эмиссионного тока от температуры для рп -

перехода, сформированного в поверхностном слое SiC различными методами . Увеличение температуры приводит к значительному снижению эмиссионного тока вследствие увеличения электрон-фононного рассеяния. Рассеяние электронов на акустических фононах приводит к экспоненциальной зависимости от температуры: (3.5.2)

где a - коэффициент, зависящий от свойств полупроводника. При увеличении напряжения возрастает ток через диод I , и еще сильнее увеличивается ток эмиссии I Э . Как видно из рисунка, пятикратное увеличение I вызывает увеличение эмиссионного тока на 2-3 порядка.

Эмиссия электронов возможна и в случае, когда рп- переход расположен перпендикулярно поверхности (рис.3.5.12). Как и в случае диспергированных пленок, барьер на поверхности преодолеют те высокоэнергетичные электроны, которые после рассеяния получают импульс, направленный по нормали к поверхности.

Препятствием для широкого практического применения рп -переходов в качестве эмиттеров являются жесткие требования к сохранению свойств на поверхности. Наличие поверхностных состояний и адсорбция частиц способны кардинально изменить электронную структуру. Это, в свою очередь, незамедлительно отражается на эффективности эмиттера. Кроме того, большое значение имеет качество рп- перехода. Он должен быть достаточно резким. В противном случае термолизация электронов произойдет раньше, чем они приобретут необходимую кинетическую энергию.

В 1936 Малтером было обнаружено явление, которое получило название эффекта Малтера и которое по механизму близко к рассмотренным выше процессам. Он исследовал вторично-электронную эмиссию из окисленного алюминия и обнаружил явно аномальное поведение эмиссионного тока. Позднее аналогичные результаты были получены и для других диэлектрических слоев, таких как кварц, слюда, В 2 О 3, KCl, MgO и др. Дальнейшие исследования показали, что для получения эмиссии электронов с системы металл-диэлектрик совершенно не обязательно облучение первичными электронами. Роль этих электронов заключается лишь в создании и поддержании положительного заряда на поверхности диэлектрической пленки, возникающего вследствие ионизации. Это может быть достигнуто и другими способами: например, освещая светом или облучая поверхность положительными ионами, или даже накладывая на поверхность диэлектрического слоя металлическую сетку и подавая на нее положительный потенциал.

Отличие этого вида эмиссии заключается, прежде всего, ваномально большой величине вторичного тока, который в ряде случаев в 1000 раз превосходит первичный. Это на порядки больше, чем наблюдается в обычном случае. Другая особенность заключается в том, что величина эмиссии оказалась крайне чувствительной к толщине окисного слоя. Эмиссия электронов достигает максимального значения при толщинах в интервале 0.2...10 мкм . Пожалуй, наиболее яркой особенностью является инерционность . Ток электронов растет со временем и достигает своего стационарного значения только через 0,1...150с (рис.3.5.13) после начала бомбардировки первичными частицами . Причем, величина стационарного тока существенно зависит от напряжения на аноде . После выключения первичного пучка эмиссия также не исчезает мгновенно. Более того, время затухания может достигать часов и суток. На рис.3.5.14 приведено изменение тока после выключения первичного пучка электронов . Даже спустя два часа наблюдается эмиссия электронов, причем величина тока составляет несколько десятых мкА.

Экспериментально было показано, что основными являются процессы, происхо-дящие в диэлектрической пленке. Свойства металла не имеют большого значения. Все это позволило придти к выводу, что главным является наличие в пленке сильного электрического поля, способ же его создания не играет роли.

Существует несколько вариантов объяснения этого явления, из которых наиболее предпочтителен предложенный Джекобсоном . Им было использовано то обстоятельство, что эмиссия электронов резко неоднородна по поверхности. Это позволило предположить, что важную роль играют пустоты и поры, которые обычно имеются в диэлектрической пленке (рис.3.5.15а ). В сплошной пленке диэлектрика, имеющего широкую запрещенную зону, длина свободного пробега электронов не настолько велика, чтобы были эффективны процессы возбуждения электронов из валентной зоны. Иное дело, если имеются пустоты. При движении в них электроны не испытывают рассеяния и могут набрать энергию, которой хватит на образование даже пачки вторичных электронов. В свою очередь ионизация приводит к возникновению положительных зарядов, нейтрализация которых быстрыми электронами затруднена. Это и приводит к возникновению сильного электрического поля, обеспечивающего автоэлектронную эмиссию из металлической подложки. После окончания стимулирующего воздействия рекомбинация электронов с положительно заряженными центрами происходит медленно, что связано с малой вероятностью этого процесса при высокой скорости электронов. Это обеспечивает значительные эмиссионные токи в течение длительного

времени после окончания стимулирующего воздействия. Но, пожалуй, более предпочтителен вариант, предполагающий наличие сквозных пор (рис.3.5.15.б), поскольку в этом случае возможен проход электронов минуя движение по диэлектрическим кристалликам.

Взрывная эмиссия

В статическом режиме с острия можно получить достаточно большие токи. При использовании катодов, изготовленных из тугоплавких металлов, например таких, как вольфрам, молибден, ниобий, можно получать стационарные токи величиной до нескольких десятков мкА, что соответствует плотности тока порядка 10 4 А/см 2 (в некоторых случаях при особой форме острий может быть получено до 10 7 А/см 2 ).

При этом свойства автоэмиссионного катода остаются неизменными. Однако, если перейти некоторое характерное для данного материала значение напряженности электрического поля, начинаются изменения, причем нередко необратимые. Изучение таких процессов представляет большой интерес как с теоретической, так и с практической точки зрения. Последнее связано не только с использованием автокатодов в таких предельных режимах для получения мощных импульсных пучков электронов, но и в связи с проблемой пробоя. Можно полагать, что именно автоэмиссия с микровыступов является спусковым механизмом для его развития в макроскопических системах.

Исследования при высоких плотностях отбираемого тока удобно проводить в импульсном режиме: подается прямоугольный импульс напряжения и регистрируется соответствующая осциллограмма эмиссионного тока i(t) . На рис.3.6.1 приведена последовательность осциллограмм тока, полученная по мере увеличения напряжения . Выбросы в начале и конце импульса обусловлены переходными процессами в измерительной цепи.

При низких напряжениях форма i(t) повторяет зависимость напряжения от времени (а ). Причем время нарастания тока менее 10 -11 с и, видимо, ограничивается только техническими возможностями использовавшейся аппаратуры. Это означает, что процесс автоэмиссии является практически безинерционным. При увеличении амплитуды напряжения начиная с некоторой ее величины наблюдается увеличение автоэмиссионного тока, степень которого зависит от амплитуды V и длительности импульса (кривые б-г ). Увеличение тока в сравнительно небольших пределах может быть объяснено разогревом острия за счет протекающего тока. Наконец, при очень высоких полях происходит взрыв острия. При этом на осциллограмме тока (рис.3.6.1, кривая д ) можно выделить несколько характерных участков, изображенных схематически на рис.3.6.2. На I этапе происходит сравнительно медленное изменение тока. Оно, начиная с некоторого момента - t зад - сменяется резким всплеском тока (II). В конце импульса величина тока на два-три порядка превышает значение тока на I участке. На следующем этапе (III) вновь наблюдается небыстрый рост i, сменяемый новым скачком тока (IV). Время перехода ко второй стадии связано с плотностью протекающего тока. Экспериментально показано, что в большом интервале токов справедливо следующее соотношение:

j 2 t зад =4×10 9 А 2 ×с/см 4 (3.6.1)

На второй стадии происходит взрыв острия, что приводит к пробою и возникновению дугового разряда. При этом около острия возникает светящийся факел, катодный факел (рис.3.6.3), который в дальнейшем перемещается к аноду.

Механизм возникновения эмиссионного тока и особенности его изменения (наличие времени задержки, появление светового излучения и др.) позволяют выделить этот вид эмиссии в особый, отличный от АЭЭ – взрывная эмиссия электронов .

Каков механизм взрывной эмиссии? Можно думать, что при высоких плотностях автоэмиссионного тока происходит разогрев отдельных участков острия до такой степени, что испаряется материал катода (рис.3.6.4). В результате
возникает облако пара, атомы которого ионизуются за счет, во-первых, ионизации в сильном электрическом поле, а также, во-вторых, вследствие рассеяния на них энергичных автоэлектронов. Образуется плазма, состоящая из электронов и положительных ионов. Причем она не является нейтральной. Электроны имеют значительно более высокую скорость, чем ионы, вследствие своей малой массы. Они опережают ионы. Кроме того, имеется сильное внешнее электрическое поле, отсасывающее электроны из плазмы. Тем самым у поверхности создается не скомпенсированный положительный заряд, который, в свою очередь, усиливает автоэмиссионное поле у поверхности катода во всей области, где существует плотная плазма и, следовательно, еще более увеличивает эмиссионный ток. Поскольку область, занимаемая этой плазмой, больше размеров первоначального участка, то это приводит к разогреву соседних участков, плавлению и формированию на них новых микроострий за счет пондеромоторных сил, действующих со стороны внешнего поля и плазмы, и их последующему взрыву (рис.3.6.5). В итоге плазма охватывает значительную часть поверхности. В дальнейшем плазма распространяется на весь промежуток между катодом и анодом.

Экспериментальные результаты показывают, что основная часть электронов, участвующих во взрывной эмиссии, эмитируется с катода, а не возникает в результате ионизации испаренных частиц. Это было показано измерением переносимого с катода на анод вещества. Оценки показали, что на один перенесенный атом приходится 100 и более электронов. Небольшая величина переносимой массы позволяет использовать острия неоднократно. При этом удается получать колоссальные токи, не достижимые другими методами. В импульсе длительностью ~100 нс можно получить ток порядка 100 кА.

На поверхности катода при этом происходят необратимые изменения. В качестве примера на рис.3.6.6 приведены электронно-микроскопические изображения поверхности острия из стали, полученные до и после импульса напряжения амплитудой 400 кВ . Отчетливо видно, что на первоначально более или менее ровной поверхности появляются выступы и впадины больших размеров. Это свидетельствует об оплавлении поверхности и образовании выступов под действием пондеромоторных сил.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png